

SAW Filter datasheet

3.8 x 3.8 mm, SMD

Table of Contents

Features	1
Maximum Ratings	1
Frequency and Electrical Characteristics (Reference temperature @ 25°C)	
Model Outline, Pin Connection and Marking	2
Test Circuit	2
Frequency Characteristics	3
Recommended Reflow Soldering Profile	4
Tape and Reel Specifications	5
Reliability Test	6

SAW Bandpass Filters | Wireless Communications

Features

Features

- 869 MHz Center frequency
- Ceramic package for Surface Mounted Technology
- Low Loss: 2.5 dB typical value within PassBand Width 868 to 870 MHz
- Maximum pulse power: 27dBm
- Good rejections specially near the GSM carrier at 912 MHz (-60db)

Applications

- Remote control RF
- Already used with main RF chipsets as Analog Devices, Infineon, Melexis, Semtech and Texas Instruments
- Wireless applications:
 - Home appliances
 - Security systems

3.8 x 3.8 mm

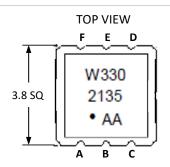
Maximum Ratings

Parameter	Min.	Тур.	Max.	Unit
Storage temperature range (T _{stg})	-40		85	°C
Operating temperature range (T _A)	-40		85	°C
DC permissive voltage			10	V
Maximum pulse input power			27	dBm
Maximum Input Power Handling (at 50°C during 50,000 hours)			20	dBm

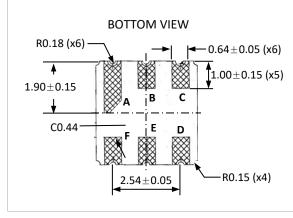
Frequency and Electrical Characteristics (Reference temperature @ 25°C)

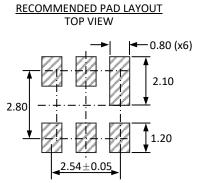
Parameter	Min.	Typ.¹	Max.	Unit
Center frequency (fc)		869		MHz
Bandwidth (BW, passband width)	2.00			MHz
Insertion Loss (IL, 868.0 – 870.0 MHz)		2.5	3.4	dB
Amplitude ripple (868.0 – 870.0 MHz)		0.3	1.5	dB
Absolute Attenuation				
From DC to 300 MHz	45	50		
From 300 to 856.5 MHz	40	45		
From 856.5 to 859.5 MHz	15	20		dB
From 878 to 883.5 MHz	15	20		
From 883.5 to 1500 MHz	48	55		
From 1500 to 2600 MHz	40	45		
Temperature coefficient of frequency		-31.0		ppm/K
Source impedance ² (Single ended)		50		Ω
Load impedance ² (Single ended)		50		Ω

Issue: Rev 6, 23 December 2022


¹ Typical values are nominal performances at room temperature

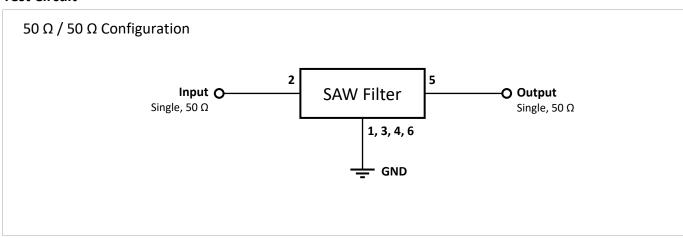
² No external matching is required


Model Outline, Pin Connection and Marking



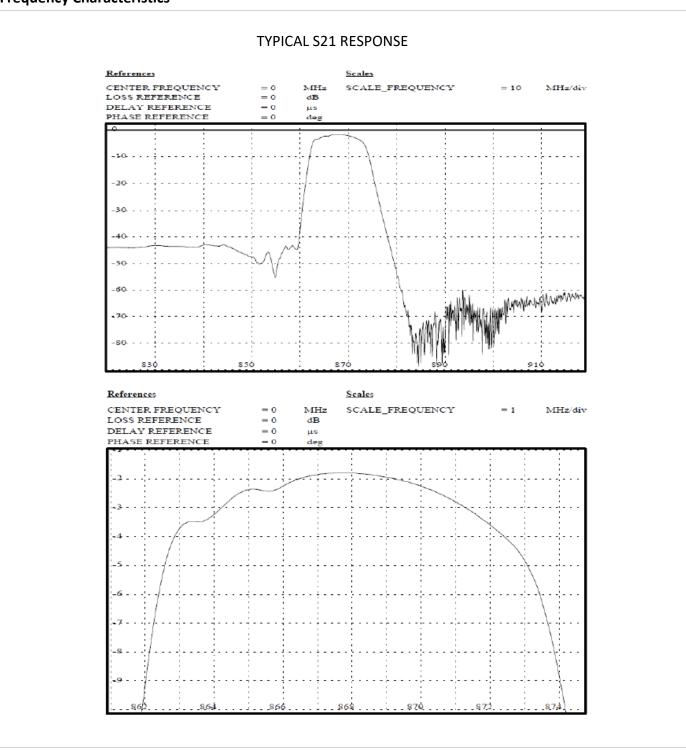
Marking		Note
Line 1	W330	RakonXpress designation
Line 2	2135	21 = Year 2021 35 = Week 35
Line 3	AA	AA = Internal code (Wafer batch)

FRONT VIEW


Pin	Connections
2	Input
5	Output
1, 3, 4, 6	Ground

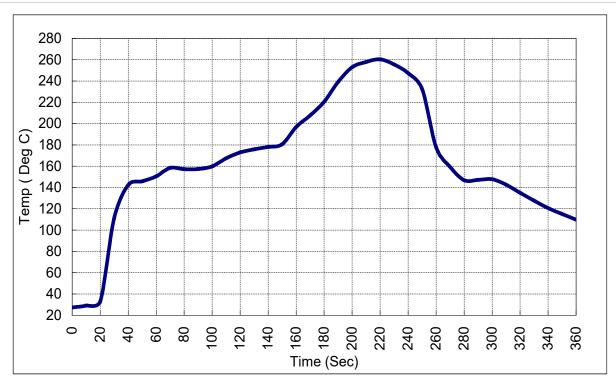
Unit: mm

Test Circuit

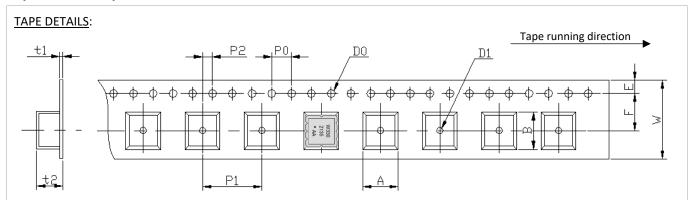


Issue: Rev 6, 23 December 2022

SAW Bandpass Filters | Wireless Communications

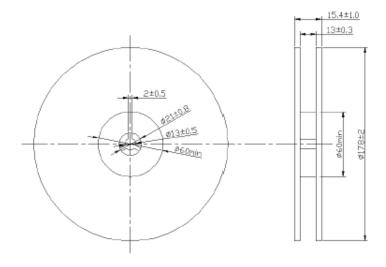

Frequency Characteristics

Recommended Reflow Soldering Profile


NOTE:

- The components shall remain within the electrical specifications after it soldered on the 1mm thickness PCB board and dipped in the solder at 260 ±5°C during 10 ± 1 seconds.
- The components shall remain within the electrical specifications after it soldered by electric iron, solder at 350 ± 10 °C during 3~4 seconds. Recovery time: 2 ±0.5h.
- Ultrasonic cleaning may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- Only leads of component may be soldered. Please avoid soldering another part of component.

SAW Bandpass Filters | Wireless Communications



Tape and Reel Specifications

Parameter	Code	Dimension	Tolerance
Height of component hole	Α	4.1 max	
Width of component hole	В	4.1 max	
Diameter of sprocket hole	D ₀	Ф 1.5	± 0.1
Diameter of feed hole	D ₁	Ф 1.5	± 0.25
Pitch of sprocket hole	P ₀	4.0	± 0.2
Length from hole center to component center	P ₁	8.0	± 0.1
Length from Pocket hole center to sprocket hole center	P ₂	2.0	± 0.2
Width of carrier tape	W	12.0	± 0.3
Width of adhesive tape	F	5.5	± 0.1
Gap of hold down tape and carrier tape	E	1.75	± 0.1
Thickness of Ebossed tape sheet	t1	0.31 max	
Thickness of Ebossed tape	t2	1.95 max	

REEL DETAILS:

NOTE:

- Unit: mm
- Standard Packing Quantity (SPQ) is 1000 pieces/reel

Issue: Rev 6, 23 December 2022

SAW Bandpass Filters | Wireless Communications

Reliability Test

Parameter	Test condition / Description
Thermal Shock	The components shall remain within the electrical specifications after being kept at the condition of heat cycle conditions: TA=-40 $^{\circ}$ C $\pm 3^{\circ}$ C, TB=85 $^{\circ}$ C $\pm 2^{\circ}$ C, t1=t2=30min, switch time \leq 3min & cycle time: 100 times, recovery time: 2h \pm 0.5h.
Temperature Storage	High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85° C $\pm 2^{\circ}$ C for 500 hours, recovery time: $2h \pm 0.5h$. Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -40° C $\pm 3^{\circ}$ C for 500 hours, recovery time: $2h \pm 0.5h$.
Humidity test	The components shall remain within the electrical specifications after being kept at the condition of ambient temperature $60^{\circ}\text{C} \pm 2^{\circ}\text{C}$, and $90^{\sim}95\%$ RH for 500 hours.
Drop test	The components shall remain within the electrical specifications after random free drops 10 times from height of 1.0 meter onto concrete floor, and the specimens shall meet the electrical specifications.
Vibration Fatigue	The components shall remain within the electrical specifications after loaded vibration at $10^{\sim}55$ Hz, amplitude 1.5mm, X, Y, Z, direction, during 2 hours.
Mechanical Shock	The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s2, duration 6ms.
Note	As a result of the particularity of inner structure of SAW products, the components can easily be breakdown by electrostatic shock; so it's mandatory to pay attention to ESD protect during the tests.