

LNO100

The LNO100 series consists of Low Noise OCXOs (LNOs) with 80 to 125 MHz output frequencies. These high-reliability OCXOs deliver ultra-low noise performance. For instance, a 100 MHz LNO100 provides a guaranteed phase noise as low as -165 dBc/Hz @ 1 kHz offset. Small form factor package options are available on Pin Through Hole (PTH) and Surface Mount Device (SMD) products. Customised designs are available on request.

The LNO100 products are also low g-sensitive OCXOs that achieve a 0.5 ppb/g performance. They are designed to meet the requirements of the most demanding phase noise applications in the instrumentation and defence industries. The LNO100 provide the ideal solution when end applications have additional SWaP (Size, Weight, and Power) requirements.

Features

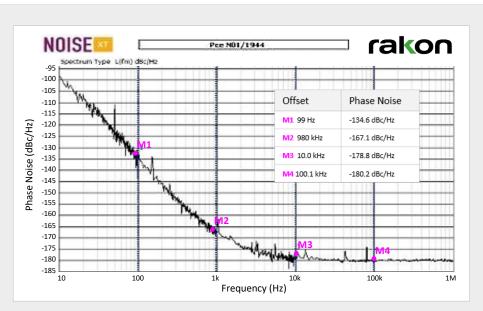
- Frequency: 80 to 125 MHz
- Guaranteed low phase noise @100 MHz: 1 kHz offset: -165 dBc/Hz 100 kHz offset: -178 dBc/Hz
- Low g-sensitivity 0.5 ppb/g
- Supply voltage: 12 V (15 V on request)
- Frequency stability vs temperature: ±0.2 ppm
- Ageing: ±1.8 ppm/10 years

Applications

- Reference for phase noise measurements
- Test equipment
- Synthesisers
- Radar
- Military communications

Packages

PTH3 25.4 x 25.4 x 12.7 mm SMD1 25.4 x 22 x 12.7 mm



Phase Noise

Parameter Condition / Remarks

LNO100 phase noise @100 MHz (Typ)

Guaranteed phase noise (Min)

PN options ¹	Frequency (MHz)	100Hz	1kHz	10kHz	100kHz	Unit
65	100	-133	-165	-177	-178	
62	80, 100, 120, 125	-130	-162	-175	-175	dD = /1.1=
58	80, 100, 120, 125	-130	-158	-172	-172	dBc/Hz
50	80, 100, 120, 125	120	-150	-165	-170	

¹ The PN option codes, 65, 62, 58 and 50, correspond to phase noises at 1 kHz offset. Specifically, 65 = -165 dBc/Hz; 62 = -162 dBc/Hz, 58 = -158 dBc/Hz and 50 = -150 dBc/Hz.

Environmental Conditions

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit	
Operating temperature (T.)	Option A	0	25	70	°C	
Operating temperature (T _{OP})	Option C	-40	25	85	C	
Switch-on temperature (T _{SO})		-40	-	85	°C	
Non-operating temperature (T_{NOP})		-55	-	125	°C	
Vibration (non-operating)	Level as per MIL-PRF-28800F, Class 3, test equipment					
Shocks (non-operating)	Level as per MIL-PRF-28800F, Class 3, test 6	equipment				

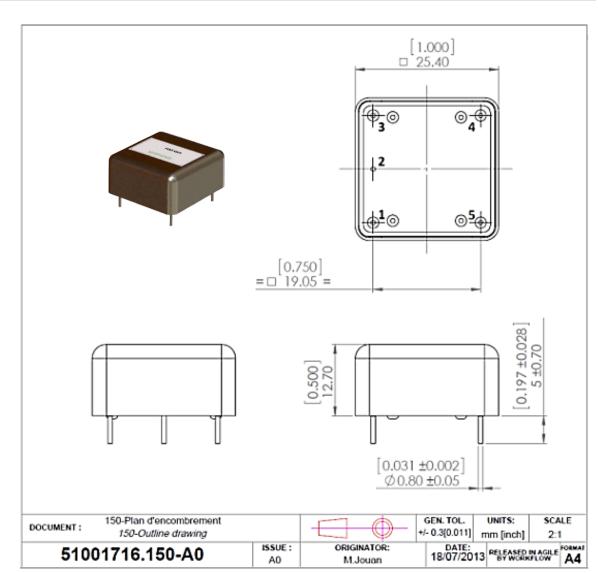
Electrical Interface

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit
Power supply (V)	Option 12	11.4	12	12.6	V
Power supply (V _{CC})	Option 15 (available on specific request)	14.25	15	15.75	
Load impedance	-	45	50	55	Ω
Input impedance	-	10	-	-	kΩ

Performances

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit
Nominal frequency (Fn)	Standard Fn: 80, 100, 120, 125MHz	80	100	125	MHz
Relative pulling frequency range	Positive slope	±1.8	-	-	ppm
Control voltage	-	0	-	10	V
Modulation bandwidth	-	3	-	-	kHz
Initial frequency accuracy	@25°C, control voltage range is providing to reach the initial frequency accuracy at shipment	-	-	±0.1	ppm
Freq. stability vs temperature	Option A: 0 to 70°C / Temperature slope 1°C/min Option C: -40 to 85°C / Temperature slope 1°C/min	-	-	±0.2 ±0.5	ppm
Freq. variation vs supply voltage	@ V _{CC} ±5% / @ 25°C	-	-	±0.02	ppm
Freq. stability vs load	@ ±10% variation of load / @25°C	-	-	±0.02	ppm
Frequency warm-up	Time to be within the initial frequency accuracy compared to frequency after 1hour	-	-	5	mn
g-sensitivity ^{2, 3}	Option SG: Worst axis, bandwidth 10 to 500Hz Option LG: Worst axis, bandwidth 10 to 500Hz	-	-	±2 ±0.5	ppb/g
Long-term stability (ageing) ⁴	1 st year 10 years	-	-	±0.5 ±1.6	ppm
Allan deviation	Tau = 1s Tau = 10s	-	-	5E-11 5E-10	-
Output level	Sine	11	13	15	dBm
Hamonic level	Bandwidth from DC to 10xFn	-	-	-25	dBc
Non-harmonic level (spurious)	Bandwidth from DC to 5GHz	-	-100	-90	dBc
Warm-up input power	-	3.0	3.7	4.5	W
Steady-state supply power	@ 25°C	-	-	2.2	W

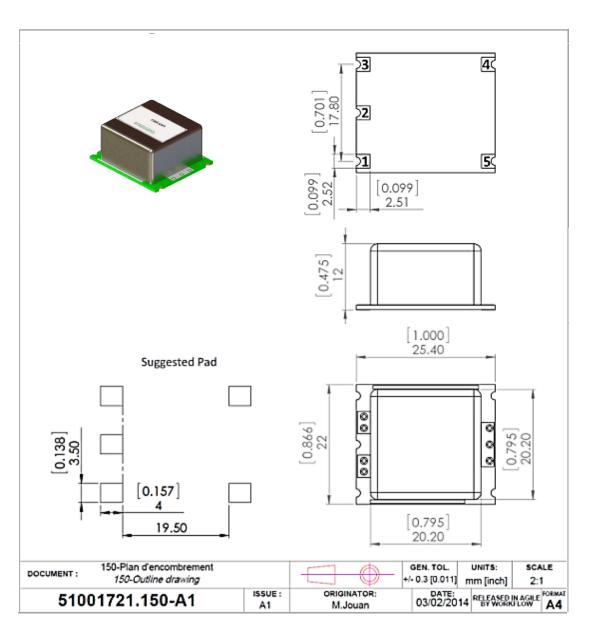
 $^{^{2}}$ LNOs with lower g-sensitivity can be provided on specific request


 $^{^3}$ The g-sensitivity sanction is the measurement of the oscillator according to MIL-PRF-55310 (random vibration method)

⁴ The projected change for 1 year or other periods is not calculated as per as MIL-PRF-55310. The fit calculation is based on measurement during 15 days minimum; the measurements obtained are fitted using the method of least squares to function defined in MIL-PRF-55310. The projected total frequency change for one year is determined by using this.

Model Outline and Pin Connections - LNO100 PTH3

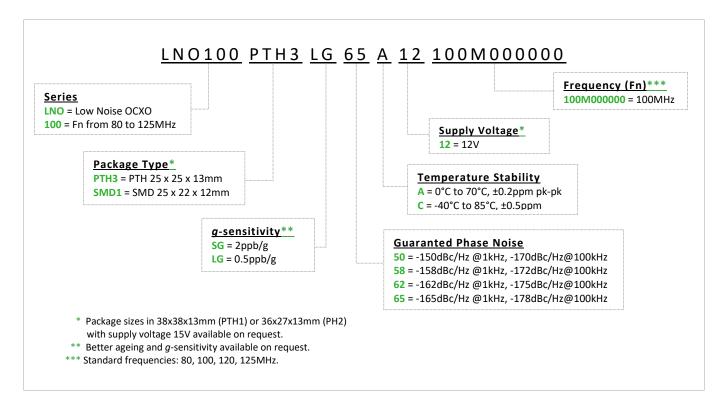
Parameter	Package	Pin#	Connect	Connections		
	PTH3 (Pin Through Hole) Size: 25.4 x 25.4 x 12.7 mm	1	Fout	Frequency output		
Package and pin connections		2	GND	Electrical & mechanical ground		
		3	Vc	Voltage control for electric tuning		
		4	GND	Electrical & mechanical ground		
		5	Vcc	Supply voltage		


Net weight	20 g/pc max.
STEP file	LNO100 PTH3 3D model To open or view the STP file, you will need to import it into one of the following software programs: Autodesk Fusion 360, CATIA, SolidWorks, Solid Edge, TurboCAD, Kubotek KeyCreator, FreeCAD, ABViewer, ShareCAD, or eMachineShop.

Model outline

Model Outline and Pin Connections - LNO100 SMD1

Parameter	Package	Pin #	Connecti	Connections		
Package and pin connections	SMD1 (Surface Mount Device) Size: 25.4 x 22 x 12.7mm	1	Vc	Voltage control		
		2	NC	Not connect		
		3	Vcc	Supply voltage		
		4	Fout	Frequency output		
		5	GND	Electrical & mechanical ground		



Model outline

Net weight	18 g/pc max.
STEP file	LNO100 SMD1 3D model To open or view the STP file, you will need to import it into one of the following software programs: Autodesk Fusion 360, CATIA, SolidWorks, Solid Edge, TurboCAD, Kubotek KeyCreator, FreeCAD, ABViewer, ShareCAD, or eMachineShop.

Ordering Part Example

