

RK408

The RK408 is a high-reliability Space OCXO in the 10-8 frequency stability class. This OCXO series is meticulously engineered to generate ultra-low phase noise signals across frequencies from 10 to 125 MHz. The RK408 provides exceptional stability even in extreme temperature variations, with deviations as low as ±20 ppb in a vacuum environment. Additionally, it exhibits an extremely low noise floor, reaching levels of -165 dBc/Hz at a high frequency of 120 MHz.

The RK408 Space OCXO has two package types: SM1 (Micro D + SMA) and PS1 (Pin side + SMA), providing flexibility to meet system board requirements. For this product, Rakon can perform thorough testing following MIL-PRF-55310 (Class 1, type 4, level S) or provide a streamlined and optimised screening process tailored to specific needs. The RK408 satisfies high precision and reliability demands in navigation, positioning, and SAR (Synthetic Aperture Radar) systems.

Features

- Frequency: 10 to 125 MHz
- Short lead time for 10, 20, 40, 50, 80, 100 and 120 MHz frequencies
- FvT: ± 20 ppb under Vacuum
- Low phase noise
- Steady-state consumption:
- 2 W under vacuum
- 3 W under atmospheric pressure
- Supply voltage: +12 V

- Warm-up consumption: 5 W
- Ageing ±300 ppb max over 18 years at 10 MHz
- Output waveform: sine 50 Ω
- Output level: 10 to 12 dBm
- Component selected as per
- ECSS-Q-ST-70-08C and ECSS-Q-ST-70-38C
- Materials selected as per
- ECSS-Q-ST-70

Applications

- SAR systems
- GNSS receivers
- Navigation
- Low noise synthesizers
- Frequency generator unit (FGU)

40 x 66 x 20 mm

Packages: MS1 and PS1

Environmental Conditions

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit
	Option A	-5	25	60	
Operating temperature (TO _P)	Option B	-20	25	70	°C
	Option C	-40	25	70	
Switch-on temperature	TS ₀	-40	-	85	°C
Non-operating temperature TNO _P		-40	-	85	°C
Random vibration	MIL-STD-202 Method 214, conduction K (46.3 grms)				
Sine vibration	MIL-STD-202 Method 204, Condition D (20 g)				
Mechanical shock	MIL-STD-202, Method 213, conduction F: Half sine with a peak acceleration of 1500 g for duration of 0.5 ms				
Radiation	Total Ionizing Dose (TID) of 100 krad, low dose rate (36 to 360 rad/h), No SEL up to LET = 60 MeV.cm ² /mg				

Electrical Interface

Parameter Condition / Remarks		Min.	Тур.	Max.	Unit
Power supply	Option 2 (12 V)	11.4	12	12.6	V
Load impedance		45	50	55	Ω
Supply voltage (V _{CC}) Option 2 (12 V)		6.75	7.25	7.75	V
Control voltage (V_C) When V_C option is selected		0	-	V_{REF}	V

Phase Noise

Parameter	Condition / Remarks	@ 10 MHz	@ 100 MHz	@ 120 MHz	Unit
	1 Hz offset	-100	-70	-65	dBc/Hz
	10 Hz offset	-130	-100	-95	dBc/Hz
Phase noise ¹ (max.)	100 Hz offset	-150	-130	-125	dBc/Hz
Pridse noise (max.)	1 kHz offset	-160	-152	-150	dBc/Hz
	10 kHz offset	-165	-162	-162	dBc/Hz
	100 kHz offset	-165	-165	-165	dBc/Hz

Frequency Characteristics

Parameter (Fn: 10 to 120 MHz)	Hz) Condition / Remarks		Тур.	Max.	Unit
Nominal frequency (Fn)	Standard frequencies: 10, 100, 120 MHz	-	10 – 120	-	MHz
Steady state input current power	Vacuum @ -20°C	-	-	3	W
Warm up supply power	Vacuum, End of Life (EOL)	-	-	5	W
Initial frequency accuracy	Frequency pulling	-	-	±0.1	ppm
Allan variance	tau = 1s	-	5*10 ⁻¹²	1*10-11	-
Frequency warm up	Time needed to reach the initial frequency accuracy (1h ref.)	-	-	10	mn
Output waveform	Sine	-	-		
Output level	Beginning of Life (BOL)	10	-	12	dBm
Harmonics level	DC to 10xFn	-	-	-30	dBc
Non harmonics level	1MHz to 5GHz	-	-	-85	dBc
Frequency adjustment	10 MHz typ.	±0.4			
(Positive slope, option 2)	100 MHz typ.	±1.1	-	-	ppm
	120 MHz typ.	±1.3			
Parameter (Standard Fn)	Condition / Remarks	10 MHz	100 MHz	120 MHz	Unit
Frequency stability vs. temperature	TOP option A	±10	±20	±20	
(FvT. max.)	TOP option B	±20	±40	±40	ppb
	TOP option C	±30	±60	±60	
Supply voltage sensitivity (max.)	sensitivity (max.) Over operating temperature		±2	±2	ppb
Load sensitivity (max.)	Over operating temperature		±50	±50	ppb
Pressure (max.)	Over operating temperature	±100	±200	±200	ppb
Ageing per year (max.)	nax.) Over operating temperature		±300	±500	ppb
Ageing over 18 years (max.) Over operating temperature		±300	±1000	±1200	ppb

Ordering Part Example

¹ Better phase noise performance products can be delivered if needed.

Model Outline (MS1) and Pin Connections

Parameter	Remarks
Package size	40 x 66 x 20 mm (Micro D + SMA)
Net weight	70 g max; 80 g max.
STEP file	RK408 MS1 3D model To open or view the STP file, you will need to import it into one of the following software programs: Autodesk Fusion 360, CATIA, SolidWorks, Solid Edge, TurboCAD, Kubotek KeyCreator, FreeCAD, ABViewer, ShareCAD, or eMachineShop.

Model outline

LEFT SIDE VIEW

FRON VIEW

NOTE: Unit is mm. General tolerance ±0.2 mm.

Model Outline (PS1) and Pin Connections

Parameter	Remarks
Package size	40 x 66 x 20 mm (Pin side + SMA)
Net weight	70 g max; 80 g max.
STEP file	RK408 PS1 3D model To open or view the STP file, you will need to import it into one of the following software programs: Autodesk Fusion 360, CATIA, SolidWorks, Solid Edge, TurboCAD, Kubotek KeyCreator, FreeCAD, ABViewer, ShareCAD, or eMachineShop.

Model outline

Pin	Connections		
2	V _{REF} / NC	Reference voltage / not conntct	
3	GND / V _C	Option 1: GND; Option 2: Vc	
4	V _{CC}	Supply voltage	
5	NC	Not connect	
6	GND	Electrical & mechanical ground	

