

RST3225N

1.0 Specification References

Parameter	Description
a. Rakon part number	T6450
b. Description	26.0 MHz RST3205N TCXO
c. Package	L x W x H: 3.02 x 2.5 x 0.9 mm nom.

Phone Rohs COMPLIANT

2.0 Absolute Maximum Rating ¹

Parameter	Min.	Max.	Unit	
a. Power supply	-0.3	+4.6	V	
b. Storage temperature	-40	85	°C	

3.0 Frequency Characteristics

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Nominal frequency		26.0		MHz	
b. Frequency calibration			±1.0	ppm	Offset from nominal frequency measured at 25°C±2°C.
c. Reflow shift			±1.0	ppm	Two consecutive reflows as per attached profile after 2 hours relaxation at 25°C.
d. Temperature range	-40		85	°C	The operating temperature range over which the frequency stability is measured
e. Frequency stability over temperature			±0.5	ppm	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range ²
f. Frequency slope			±0.1	ppm/°C	Minimum of one frequency reading every 2°C over the operating temperature range ²
g. Static temperature hysteresis			0.6	ppm	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C
h. Sensitivity to supply voltage variations			±0.1	ppm	Supply voltage varied ±5% at 25°C
i. Sensitivity to load variations			±0.2	ppm	±10% load change at 25°C ³
j. Long term stability			±1 ±3 ±5	ppm	Frequency drift over 1 year at 25°C Frequency drift over 3 years at 25°C Frequency drift over 10 years at 25°
k. Acceleration sensitivity			2	ppb/g	Gamma vector of all three axes from 30Hz to 1500Hz

4.0 Power Supply

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Supply voltage (V _{DD})		2.55		V	With a tolerance of ±5%.
b. Supply current			2.0	mA	At maximum V _{DD} ³

¹ Operating beyond this limit may result in change or permanent damage to the device.

² Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents on the oscillator can lead to short term frequency drift.

³ Specified for load stated in oscillator output section at 25°C.

5.0 Oscillator Output

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Output waveform					DC coupled clipped sinewave ⁴
b. Output voltage level	0.8			Vpk-pk	At minimum supply voltage ³
c. Output load	9	10	11	kΩ/pF	(10kΩ // 10pF) ±10%
d. Start-up time (amplitude)			0.5	ms	Within 90% of the minimum specified output level.
e. Start-up time (frequency)			2	ms	Within ±0.5ppm of steady state frequency.

6.0 SSB Phase Noise (26.0 MHz, at 25°C)

Parameter	Тур.	Max.	Unit.	Test Condition / Description
a. 1Hz offset	-62		dBc/Hz	
b. 10Hz offset	-92		dBc/Hz	
c. 100Hz offset	-118		dBc/Hz	
d. 1kHz offset	-140		dBc/Hz	
e. 10kHz offset	-157		dBc/Hz	
f. 100kHz offset	-161		dBc/Hz	
g. 1MHz offset	-164		dBc/Hz	

7.0 Marking

Parameter	Test Condition	Test Condition / Description									
a. Type	Engraved	Engraved									
b. Line 1	[R ##M# YM	[R ##M# YM] R = Rakon, ##M# = Frequency (M=MHz, e.g. 19M2=19.2MHz) ⁵ , YM = Date code*									
c. Line 2	[• XXXX XXX	[• XXXX XXX] • = Pin 1, XXXX = Internal Code, XXX = Lot Code									
d. Date code*		Y - Year Code					M - Month Code				
	Code Year	Code	Year	Code	Year	Code	Month	Code	Month		
	A 2010 B 2011 C 2012 D 2013 E 2014 F 2015 G 2016 H 2017 I 2017	J K L M N O P Q R	2019 2020 2021 2022 2023 2024 2025 2026 2027	S T U V W X Y Z	2028 2029 2030 2031 2032 2033 2034 2035	1 2 3 4 5	Jan Feb Mar Apr May Jun	7 8 9 A B	Jul Aug Sep Oct Nov Dec		

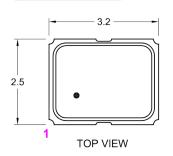
8.0 Manufacturing Information

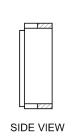
Parameter	Test Condition / Description					
a. Reflow	Solder reflow processes as per profile attached					
b. Packaging description	Tape and reel. Standard packing quantity (SPQ) is 3000 units/reel					

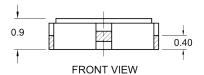
 $^{^{\}rm 4}$ External AC-Coupling capacitor required. 1nF or greater recommended.

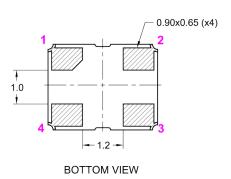
⁵ Frequency marking is only represented by the first three significant digits. For example, on an RST2016N TCXO at 16.368MHz, its frequency code marking will be 16M3.

9.0 Environmental Specification

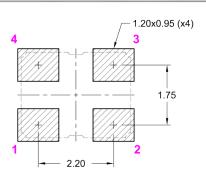

Parameter	Test Condition / Descripti	ion					
a. RoHS compliant	Yes						
b. Shock	Free dropping from 150 cm	n height 5 times on a hard wooden board					
c. Moisture resistance	500 ±12 hours at 60°C ±3°C	C, 85% relative humidity ⁶					
d. Thermal cycling	2 hours before testing, each	•					
	Temperature 140 +0/-6°C	Duration: 30 ±3 minutes					
	2. 25°C ±2°C	2 – 3 minutes					
	3. 85 +4/-0°C	30 ±3 minutes					
	4. 25°C ±2°C	2 – 3 minutes					
e. Vibration	Sweep time: 1 oct/min	Amplitude (total excursion): 1.5 mm (10 – 36 Hz), 4G (36 – 200 Hz)					


 $^{^{\}rm 6}$ Frequency shift $\leq\!\!2ppm$ after environmental conditions.




10.0 Model Outline

MODEL OUTLINE



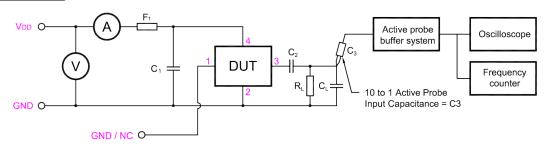
RECOMMENDED PAD LAYOUT - TOP VIEW

Pin	Connections
1	GND / NC
2	GND
3	OUTPUT
4	Supply Voltage (VDD)

TITLE: RST/RIT3225 MODEL 4P - Sinewave (Package A)

RELATED DRAWINGS:

REVISION: B
DATE: 31-Aug-2018
SCALE: 10:1
Millimetres


TOLERANCES: XX = XX = ±0.2 X.XX = ±0.10 X.XXX = X° = Hole =

11.0 Test Circuit

CLIPPED SINEWAVE:

C₁: 100nF C₂: ≥1nF

$$\begin{split} C_\text{T} = C_\text{L} + C_3 \left(C_3 \right. &- \text{Oscilloscope probe capacitance}) \\ C_\text{T} \text{ as stated in OSCILLATOR OUTPUT section} \end{split}$$

R_∟: 10K

F $_{1}$: A ferrite bead or a resistor between $22\Omega \sim 47\Omega$ recommended.

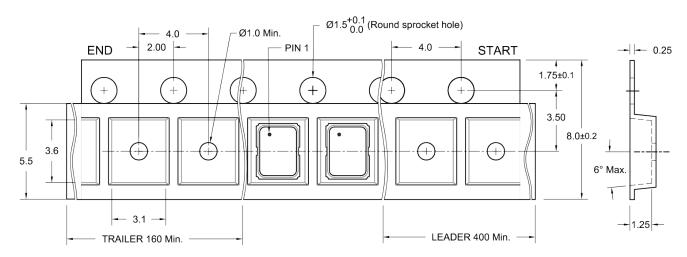
TITLE: RIT/RST N SERIES HS-TCXO TEST CIRCUIT (Package A)

RELATED DRAWINGS:

REVISION: A

DATE: 01-Dec-2020

SCALE: NTS


Millimetres

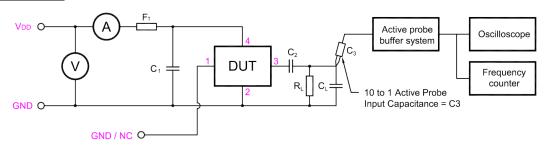
FILENAME: CAT1563



12.0 Tape and Reel TAPE DETAILS

USER DIRECTION OF UNREELING

REEL DETAILS


Note: The tape & reel packaging specifications follow the guidelines of the EIA Standard EIA-481.

TITLE: 3225 SERIES TAPE & REEL (Package A/AG)	FILENAME: CAT1108	TOLERANCES:
RELATED DRAWINGS:	REVISION: B	- XX = _ X.X = ±0.2
	DATE: 17-Apr-2020	
	SCALE:	- x.xxx =
	Millimetres	Hole = © 2017 Rakon Limited

13.0 Reflow

CLIPPED SINEWAVE:

 C_1 : 100nF
 $C_T = C_L + C_3$ (C_3 - Oscilloscope probe capacitance)

 C_2 : \geq 1nF
 C_T as stated in OSCILLATOR OUTPUT section

 R_L : 10K
 F_1 : A ferrite bead or a resistor between $22\Omega \sim 47\Omega$ recommended.

TITLE: RIT/RST N SERIES HS-TCXO TEST CIRCUIT (Package A) FILENAME: CAT1563

RELATED DRAWINGS:

T6450 | Revision C (2022-12-05)

High Stability TCXO

14.0 Specification History

Revision	User	Notes	Approver(s)	Date
Α	TXP	Standard 2016 TCXO specification created	CG	2021-02-12
В	TXP	Pin 1 can be GND or NC. No Power Down function	CG	2021-03-18
С	RXP	Change TemesXpress to RakonXpress	CG	2022-12-05