QEA95 / QEA95V 9.6 x 11.4 mm, 4-pin SMD package #### **Frequency and Electrical Characteristics** | Parameter | Min. | Тур. | Max. | Unit | Test condition / Description | |--|-------------------------|------------|--------------------------------------|--------|--| | Nominal frequency (Fn) | 9.6 | | 50 | MHz | | | Operating temperature range | -40 | | 85 | °C | See 'Order Part Example' | | Storage temperature range | -55 | | 125 | °C | | | Power supply voltage (V _{CC}) | | 3.0 to 5.0 | | V | ±5%. See 'Order Part Example' | | Frequency adjustment Type QEA95 Type QE95V Type QE95V1 | ±3
±3
Trimmerless | | | ppm | Mechanical Trimmer | | Preset frequency
Type QEA95
Type QE95V
Type QE95V1 | ±0.5
±0.5
±2 | | | ppm | At 25±2°C | | Frequency stability vs temperature | | | ±2.5 | ppm | See 'Order Part Example' | | Frequency stability vs voltage variation (±5%) | | | ±0.3 | ppm | For frequency <28MHz ¹ | | Frequency stability vs load variation (±10%) | | | ±0.3 | ppm | | | Long-term stability (Ageing) | | | ±1 | ppm | Frequency drift over 1 year at 25°C. For frequency <28MHz ² | | Supply current $9.6MHz \le Fn \le 16MHz$ $16MHz \le Fn \le 40MHz$ | | | 1.5
2.0 | mA | With load $10K\Omega//10pF$ | | Output voltage
9.6MHz ≤ Fn ≤ 16MHz
16MHz ≤ Fn ≤40MHz | | | 0.8
0.7 | Vp-p | Clipped sine DC-cut | | Pulling range
Type QEA95
Type QE95V
Type QE95V1 | -
5
8 | | -
10
14 | ppm | 5.0V: Vc = 2.50 ±2.00V
3.3V: Vc = 1.65 ±1.35V
3.0V: Vc = 1.50 ±1.00V | | Phase noise Offset: 10Hz Offset: 100Hz Offset: 1kHz Offset: 10kHz Offset: 100kHz | | | -110
-130
-148
-155
-160 | dBc/Hz | Typical value for 10MHz TCXO | ### Order Part Example – QEA95 AA0 / 10.000MHz | Parameter | Product and package | Control Voltage (V _C) | Frequency Stability
(FvT) | Supply Voltage
(Vcc) | Output | Nominal
Frequency (Fn) | |-----------|---|---|--|-------------------------------------|--------------------------|---------------------------| | Code | QEA = TCXO
95 = SMD,
9 .6 x 11.4 mm | = TCXO with trimmer
V = VC-TCXO with trimmer
V1 = VC-TCXO trimmerless | A = ±2.5ppm vs -30 to 75°C
B = ±1.5ppm vs -20 to 70°C
C = ±3.5ppm vs -40 to 85°C
D = ±1.5ppm vs -40 to 85°C
E = ±2.0ppm vs -20 to 70°C | A = +5.0V
D = +3.3V
E = +3.0V | 0 = Clipped
sine wave | Please enter Fn in
MHz | $^{^{1}}$ For frequency $\geq\!28\text{MHz}$, stability vs voltage variation (±5%) is ±1ppm max. ² For frequency ≥28MHz, ageing first year ±2ppm max. #### Model Outline, Recommended Pad Layout, Marking and Packaging ### **Marking and Example** | Marking | Code and Description | | | Marking Example | | | |---------|---|---|--|-----------------------------------|---|-------| | Line 1 | X2 X X 0 | | | | | | | | X2
Product ID
E2 = QEA95
G2 = QEA95V
H2 = QEA95V1 | X Temperature Stability (FvT) A = ±2.5ppm vs -30 to 75°C B = ±1.5ppm vs -20 to 70°C C = ±3.5ppm vs -40 to 85°C D = ±1.5ppm vs -40 to 85°C E = ±2.0ppm vs -20 to 70°C | X
Supply Voltage (Vcc)
A = +5.0V
D = +3.5V
E = +3.0V | Output O = Clipped sine wave | E2 A A 0 • E2 = QEA95 • A = ±2.5 ppm over -30 to 75°C • A = +5.0 V • 0 = Clipped sinewaye | E2AA0 | | Line 2 | ####### • 6-character format: five numerals and one decimal point. | | | 10.000
• 10.000 =
10.000MHz | 10.000
2523-R | | | Line 3 | YYWW-M YY: Year code (last two digits of the year) WW: Week code (2-digit calendar week number) -M: Manufacturing code (hyphen followed by a capital letter) | | | | 2523-R • 25 = Year 2025 • 23 = Week 23 • -R = Rakon | | #### **Environmental Specifications** | Parameter | Test Condition / Description | |---------------------|--| | Shock | Random drop onto concrete 10 times from a height of 75 cm | | Moisture resistance | RH: 90% at 40°C for 200 hours | | Vibration | Frequency: 10 – 55 Hz
Cycle: 2.00 mm. 3-direction time: 2 hours for each X, Y, Z axis | #### **Test Circuit** #### **Tape Details** #### **Reel Details** ## **Reflow Soldering Profile**