

RST2016N

The RST2016N employs an analogue ASIC for the oscillator and a high-order temperature compensation circuit in a small font factor $2.0 \times 1.6 \times 0.7$ mm package. This low-power SMD Temperature Compensated Crystal Oscillator (TCXO) provides a voltage control option (VCTCXO) with a wide frequency range available from 10 to 52 MHz. Supply voltage options are 1.8 to 3.3 V.

The high stability RST2016N is designed for high-performance GNSS and communication applications where the required frequency stability ±0.5 ppm over operating temperature ranges from -40 to 85°C.

Features

- Frequency slope and perturbation specifications can be customised to the application requirement
- Excellent phase noise performance
- Frequency stability ±0.5 ppm over operating temperatures from -40 to 85°C

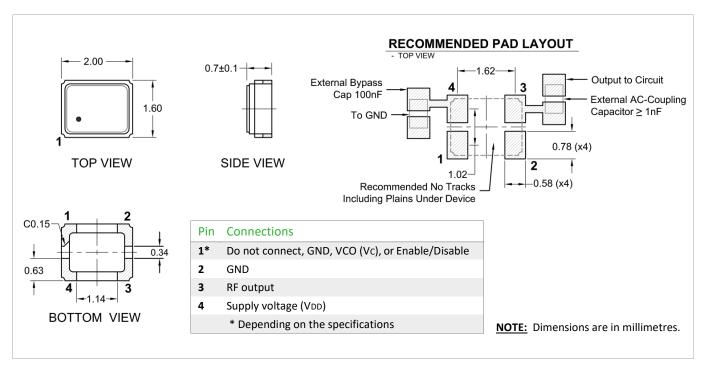
Applications

- GNSS
- Smartphone
- Consumer devices
- Communications
- Wi-Fi

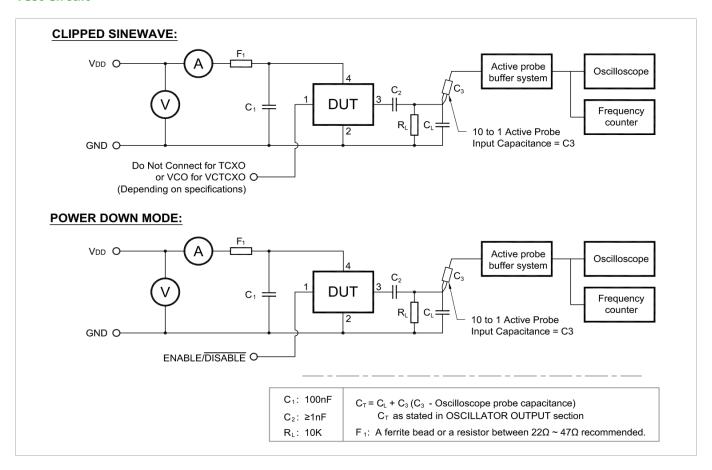
2.0 x1.6 x 0.7 mm

Standard Specifications

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
Nominal frequency (Fn)		10 – 52		MHz	
Frequency calibration			±1	ppm	Offset from nominal frequency measured at 25°C ±2°C
Reflow shift			±1	ppm	Two consecutive reflows
Operating temperature range	-40		85	°C	The operating temperature range over which the frequency stability is measured
Frequency stability over temperature			±0.5	ppm	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range ¹ . Control voltage set to the midpoint of Vc. 100% screen test
Frequency slope			±0.1	ppm/°C	Minimum of one frequency reading every 2°C over the operating temperature range ²
Static temperature hysteresis			0.6	ppm	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C
Sensitivity to supply voltage variations			±0.1	ppm	V _{DD} varied ±5% at 25°C
Sensitivity to load variations			±0.2	ppm	±10% load change at 25°C ²
Long term stability			±1	ppm	Frequency drift over 1 year at 25°C
Acceleration sensitivity			1	ppb/g	Gamma vector of all three axes from 30 to 1500Hz
Supply voltage (V _{DD})		1.8 – 3.3		V	With a tolerance of ±5%
Control voltage (Vc) range	0.3 0.4	0.9 1.4	1.5 2.4	V	$V_{DD} \le 2.3V$ $V_{DD} > 2.3V$
Supply current			2	mA	At maximum V _{DD} ²
Output voltage level	0.7			V_{pk-pk}	At minimum $V_{\text{DD, s}}\text{pecified}$ for load stated in oscillator output section at 25°C^{2}
Output waveform					DC coupled clipped sinewave ³


¹ Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents on the oscillator can lead to short term frequency drift.

² Specified for load stated in oscillator output section at 25°C.


³ External AC-Coupling capacitor required. 1 nF or greater recommended.

Model Outline and Recommended Pad Layout

Test Circuit

