RK200NS [PRELIMINARY]

The RK200NS is a cost-effective, low power consumption Space VCXO designed for NewSpace mini satellites and constellations. This VCXO is ideal for smallsats where tolerance to Total Ionizing Dose (TID), low power consumption, and good phase noise are required. It is designed for missions up to 12 years.

The standard frequencies of the RK200NS are 10 MHz and 100 MHz. Custom frequencies are available from 10 to 120 MHz. The RK200NS is a small form-factor, low profile NewSpace VCXO in a 25 x 25 x 13 mm Pin Through Hole (PTH) package.

Features		Applications	25 x 25 x 13 mm
 Frequency: 10 to 120 MHz Low profile PTH: 25 x 25 x13 mm Supply voltage: 5 V Voltage control function 	 Output waveform: Sinus TID limit: 40 kRads Latch-up free up to LET = 15 MeV/mg/cm² 	Frequency convertersSynthesizers	• 200 Kgg

- Stead state consumption: 150 mW

Environmental Conditions

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit
Operating temperature	T _{OP}	-20	25	70	°C
Switch-on temperature	T _{so}	-40	-	85	°C
Non-operating temperature	T _{NOP}	-40	-	85	°C
Sine vibration	20 to 50 Hz: +6 dB/oct 50 to 350 Hz: 0.8 g ² /Hz 350 to 2000 Hz: -6 dB/oct				
Shocks	Mechanical shock as per MIL-STD-202, Method 213 Half sine with a peak acceleration of 2000 <i>g</i> for a duration of 0.5 msec.				
Radiation	Total Ionizing Dose (TID) of 40 krad, low dose rate (36 to 360 rad/h) Latch up free up to LET = 15 MeV/mg/cm ²				

Electrical Interface

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit
Power supply	V _{cc}	4.75	5	5.25	V
Load impedance	-	45	50	55	Ω
Control Voltage	V _{CTRL}	0	-	3.3	V

Screening Options

Parameter	Condition / Remarks	EM Option	FM Option
Ageing	@ max operating temperature range	_	✓
Random acceleration	Level as per MIL-STD-202, Method 214, Condition I-D	_	\checkmark
Thermal shocks	MIL-STD-202, Method 107, Condition A1	-	~
Final measurement	MIL-STD-883, Method 2020, Condition B	✓	\checkmark
External visual inspection	MIL-STD-883, Method 2009	✓	~

rakon

Performances @ 100 MHz

Parameter	Condition / Remarks	Min.	Тур.	Max.	Unit
Nominal frequency	-	-	100	-	MHz
Initial frequency accuracy	Vacuum, at time of shipment, @25°C	-	-	±3	ppm
Overall frequency drift	Initial, temperature range, EOL (12-year)	-	-	±20	ppm
Pulling range ¹	Cover the overall frequency drift	-	±20	-	ppm
Input tuning voltage	V _{CTRL} / positive slope	0	-	3.3	V
Modulation bandwidth	Tuning voltage input	150	-	1000	Hz
Freq. stability vs temperature	Referenced to +25°C	-	-	13	ppm
Freq. stability vs supply voltage	-	-	-		ppm
Freq. stability vs load	For ±10% variation of load	-		±0.5	ppm
Freq. stability vs pressure	Atm to vacuum	-	1	±0.5	ppm
Freq. ageing	1 year 12 years	-	-	±1 ±5	ppm
Phase noise	@10 Hz offset	-	-	-90	
(Achieved after 10 mn warm up).	@100 Hz offset	-	-	-120	
@ 25°C +3 dB max, variation in	@1kHz offset	-	-	-140	dBc/Hz
the temperature range -10 to +45°C	@10 kHz offset	-	-	-150	UBC/112
	@100 kHz offset	-	-	-155	
	From 1 MHz to 40 MHz	-	-	-155	
Output waveform	-	Sinus			
Output level	BOL	0	-	3	dBm
Harmonic level	DC to 1 GHz	-	-30	-25	dBc
Spurious level	Non-harmonics	-	-	-80	dBc
Steady-state supply power	@ 5 V	-	100	150	mW

¹ The value covers the overall frequency drifts. The requirement is to have a frequency pulling up to the overall stability.

Model Outline and Pin Connections

Parameter	Package	Pin #	Connections
Package type	Pin through hole	1	Fout (Frequency output)
	Size: 25 x 25 x 13 mm	2	GND (Ground)
		3	V _{CTRL} (Voltage control)
		4	Vref (Reference voltage output)
		5	V _{CC} (Supply voltage)
Model outline			

25.40 akon ³© © 0 Q4 0.750 00.1] 2 [0.724] Z 9 **\$**_5 © © [0.476] 12.10 [0.750] 19.05 H max [0.031] Ø0.80 0.026 [0.244±0.020] 6.20±0.50 marking G [0.079] Ventig hole Ø2 150-Plan d'encombrement GEN. TOL. UNITS: SCALE DOCUMENT : \bigcirc F 150-Outline drawing +/- 0.25 2:1 mm (inch)