

Page 1 of 21

CRYSTAL OSCILLATORS, CLASS 2, 4MHz TO 100MHz, AHCMOS AND ACMOS COMPATIBLE OUTPUT, RAD-HARD

BASED ON TYPE RK135

ESCC Detail Specification No. 3503/001

Issue / November 2022	Issue 7	November 2022
-----------------------	---------	---------------

Document Custodian: European Space Agency - see https://escies.org

LEGAL DISCLAIMER AND COPYRIGHT

European Space Agency, Copyright © 2022. All rights reserved.

The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication.

This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be:

- copied in whole, in any medium, without alteration or modification.
- copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed.

PAGE 3

No. 3503/001

ISSUE 7

DOCUMENTATION CHANGE NOTICE

(Refer to https://escies.org for ESCC DCR content)

DCR No.	CHANGE DESCRIPTION
<u>1524</u>	Specification upissued to incorporate changes per DCR

TABLE OF CONTENTS

1	GENERAL	5
1.1	SCOPE	5
1.2	APPLICABLE DOCUMENTS	5
1.3	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS	5
1.4	THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS	5
1.4.1	The ESCC Component Number	5
1.4.2	Characteristics Codes	5
1.4.3	Component Type Variants	6
1.5	MAXIMUM RATINGS	7
1.6	PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION	8
1.6.1	Flat Package (FP1) – 14 leads	8
1.6.2	Flat Package (FP2) – 20 leads	9
1.6.3	Flat Package (FP3) – 12 leads	10
1.6.4	Flat Package (FP4) – 16 leads	11
1.6.5	J-Lead Package (JL2) – 4 leads	12
1.7	FUNCTIONAL DIAGRAM	13
1.8	MATERIALS AND FINISHES	13
2	REQUIREMENTS	14
2.1	GENERAL	14
2.1.1	Oscillator Class	14
2.1.2	Deviations from the Generic Specification	14
2.1.2.1	Deviations from Qualification and Periodic Tests - Chart F4	14
2.2	MARKING	14
2.3	ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES	15
2.3.1	Room Temperature Electrical Measurements	15
2.3.2	High and Low Temperatures Electrical Measurements	16
2.3.3	Notes to Paras. 2.3.1 and 2.3.2 Room, High and Low Electrical Measurements	16
2.4	PARAMETER DRIFT VALUES	17
2.5	INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS	18
2.6	BURN-IN CONDITIONS	19
2.7	FREQUENCY AGEING CONDITIONS	19
2.8	OPERATING LIFE CONDITIONS	19
2.9	TOTAL DOSE RADIATION TESTING	19
2.9.1	Bias Conditions and Total Dose Level for Total Dose Radiation Testing	19
2.9.2	Electrical Measurements for Total Dose Radiation Testing	20
APPEND	IX A	21

PAGE 5

ISSUE 7

1 <u>GENERAL</u>

1.1 <u>SCOPE</u>

This specification details the ratings, physical and electrical characteristics and test and inspection data for the component type variants and/or the range of components specified below. It supplements the requirements of, and shall be read in conjunction with, the ESCC Generic Specification listed under Applicable Documents.

1.2 <u>APPLICABLE DOCUMENTS</u>

The following documents form part of this specification and shall be read in conjunction with it:

(a) ESCC Generic Specification No. 3503.

<u>TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS</u> For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESCC Basic Specification No. 21300 shall apply.

1.4 THE ESCC COMPONENT NUMBER AND COMPONENT TYPE VARIANTS

1.4.1 The ESCC Component Number

The ESCC Component Number shall be constituted as follows:

Example: 350300101R100M00000HC

- Detail Specification Reference: 3503001
- Component Type Variant Number: 01 (as required)
- Total Dose Radiation Level Letter (100krad(Si)): R (as required)
- Characteristic code: Nominal Frequency (100MHz): 100M000000 (as required)
- Characteristic code: Output Waveform (AHCMOS): HC (as required)

1.4.2 Characteristics Codes

Characteristics to be codified as part of the ESCC Component Number shall be as follows:

(a) Nominal Frequency expressed by means of the following codes. The unit quantity shall be MHz:

Nominal Frequency f _{Nom} (MHz)	Code
X.XXXXXX	XMXXXXXX
XX.XXXXXX	XXMXXXXXX
XXX.XXXXXX	XXXMXXXXXX

(b) Output Waveform type expressed by means of the following codes:

Output Waveform	Code
AHCMOS	HC
ACMOS	AC

ESCC Detail Specification

ISSUE 7

1.4.3 <u>Component Type Variants</u>

The component type variants applicable to this specification are as follows:

Variant Number	Nominal Output Frequency f _{Nom} (MHz)	Case	Nominal Supply Voltage V _{CCNom} (V)	Output Waveform	Terminal Material and Finish	Weight max g	Total Dose Radiation Level Letter
01	4 to 100	FP1	3.3	AHCMOS, ACMOS	D2	5	R [100krad(Si)]
02	4 to 100	FP2	3.3	AHCMOS, ACMOS	D2	5	R [100krad(Si)]
03	4 to 100	FP3	3.3	AHCMOS, ACMOS	D2	5	R [100krad(Si)]
04	4 to 100	FP4	3.3	AHCMOS, ACMOS	D2	5	R [100krad(Si)]
06	4 to 100	JL2	3.3	AHCMOS, ACMOS	D2	2	R [100krad(Si)]

The terminal material and finish shall be in accordance with the requirements of ESCC Basic Specification No. 23500.

Total dose radiation level letters are defined in ESCC Basic Specification No. 22900. If an alternative radiation test level is specified in the Purchase Order the letter shall be changed accordingly.

PAGE 7

No. 3503/001

ISSUE 7

1.5 MAXIMUM RATINGS

The maximum ratings shall not be exceeded at any time during use or storage.

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the ESCC Generic Specification.

Characteristics	Symbols	Maximum Ratings	Unit	Remarks
Supply Voltage	Vcc	-0.5 to +7	V	Note 1
Load Impedance	CL	50	pF	Note 2
Operating Temperature Range	T _{op}	-55 to +110	°C	T _{amb}
Storage Temperature Range	T _{stg}	-55 to +110	°C	
Soldering Temperature	T _{sol}	+260	°C	Note 3

NOTES:

- 1. Device is functional as follows: +3.13V \leq V_{CC} \leq +3.47V (where nominal V_{CC}, V_{CCNom} = +3.3V)
- 2. Device is functional as follows:

Output Waveform	Frequency Range	Load Impedance
AHCMOS	4MHz ≤ f _{Nom} < 80MHz	$C_{LMin} = 13pF \le C_L \le C_{LMax} = 18pF$ (load in parallel with $R_L = 1k\Omega$) (where nominal C_L , $C_{LNom} = 15pF$)
	$80MHz \le f_{Nom} \le 100MHz$	$C_{LMin} = 8.2pF \le C_L \le C_{LMax} = 11pF$ (load in parallel with $R_L = 1k\Omega$) (where nominal C_L , $C_{LNom} = 10pF$)
ACMOS	$4MHz \le f_{Nom} < 100MHz$	$C_{LMin} = 13pF \le C_L \le C_{LMax} = 18pF$ (load in parallel with $R_L = 1k\Omega$) (where nominal C_L , $C_{LNom} = 15pF$)

3. Hand soldering: duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

1.6 PHYSICAL DIMENSIONS AND TERMINAL IDENTIFICATION

1.6.1 Flat Package (FP1) - 14 leads

	Dimensi			
Symbols	Min Max		Notes	
Α	14.86	15.12		
В	13	-		
С	19.94	20.2		
D	-	3.71		
Е	15.24 BSC		2 places	
F	2.54 BSC		All leads	
G	0.28	0.48	All leads	
Н	0.15	0.35	All leads	

<u>NOTES:</u> 1. The The terminal identification is specified by marking of the terminal number on the lid as shown. **NOTE**: only terminal number 1 is actually marked.

See Para. 1.7 for the terminal connections.

1.6.2 Flat Package (FP2) – 20 leads

Е

F

G

Н

11.43 BSC

1.27 BSC

0.48

0.35

0.28

0.15

NOTES:
The terminal identification is specified by marking of the terminal number on the lid as shown.
NOTE: only terminal number 1 is actually marked.
See Para. 1.7 for the terminal connections.

2 places

All leads

All leads

All leads

1.6.3 Flat Package (FP3) – 12 leads

Symbols	Dimensi	N 1 <i>i</i>	
	Min	Max	Notes
А	15.75	16.01	
В	13	-	
С	15.75	16.01	
D	-	3.58	
E	12.7 BSC		2 places
F	2.54 BSC		All leads
G	0.28	0.48	All leads
Н	0.15	0.35	All leads

NOTES: 1. The

The terminal identification is specified by marking of the terminal number on the lid as shown.
<u>NOTE</u>: only terminal number 1 is actually marked.
See Para. 1.7 for the terminal connections.

1.6.4 Flat Package (FP4) - 16 leads

NOTES: 1. The The terminal identification is specified by marking of the terminal number on the lid as shown. **NOTE**: only terminal number 1 is actually marked. See Para. 1.7 for the terminal connections.

ISSUE 7

1.6.5 J-Lead Package (JL2) – 4 leads

	Dimensi			
Symbols	Min Max		Notes	
А	13.72	14.22		
В	8.8	9.8	2 places	
С	-	4.2	All leads	
D	4.93	5.23	2 places	
Е	0.46	0.56	All leads	
F	7.42	7.82	All leads	
G	1.58	1.78	All leads	
Н	0.89	1.15	All leads	

NOTES: 1. The

The terminal identification is specified by reference to the index corner as shown.
See Para. 1.7 for the terminal connections.

1.7 FUNCTIONAL DIAGRAM

Variant	Case		Terminal Number			
Number		Output	Vcc	Ground	Not Connected	
01	FP1	8	14	1, 2, 3, 4, 7, 10, 11, 12, 13	5, 6, 9	1, 2
02	FP2	11	13	1, 2, 3, 4, 5, 6, 7, 10, 14, 15, 16, 17, 18, 19, 20	8, 9, 12	1, 2
03	FP3	7	12	1, 2, 3, 6, 9, 10, 11	4, 5, 8	1, 2
04	FP4	10	8	1, 2, 3, 4, 5, 9, 12, 13, 14, 15, 16	6, 7, 11	1, 2
06	JL2	3	4	2	1	1, 2

NOTES:

- 1. The case is connected to Ground.
- 2. Not connected pins must be connected to a potential (e.g., Ground)

1.8 MATERIALS AND FINISHES

Materials and finishes shall be as follows:

(a) Case

The FP1, FP2, FP3, FP4 cases shall be hermetically sealed, and have a metal body with hard glass seals and a seam sealed metal lid.

The JL2 case shall be hermetically sealed, and have a ceramic body with brazed leads and a seam sealed lid.

(b) Terminals As specified in Para. 1.4.3 Component Type Variants.

PAGE 14

No. 3503/001

ISSUE 7

2 <u>REQUIREMENTS</u>

2.1 <u>GENERAL</u>

The complete requirements for procurement of the components specified herein are as stated in this specification and the ESCC Generic Specification. Permitted deviations from the Generic Specification, applicable to this specification only, are listed below.

Permitted deviations from the Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESCC requirement and do not affect the component's reliability, are listed in the appendices attached to this specification.

2.1.1 Oscillator Class

The components specified herein shall satisfy the requirements Class 2 Oscillators in accordance with the Generic Specification.

2.1.2 Deviations from the Generic Specification

- 2.1.2.1 Deviations from Qualification and Periodic Tests Chart F4
 - Mechanical Shock: the following test conditions shall apply: MIL-STD-202, Test Method 213, Test Condition F except that the tests condition values shall be: 2000g, 0.3ms, half-sine.
 - (b) Random Vibration: the following test conditions shall apply: MIL-STD-202, Test Method 214, Test Condition I-J (37.8grms overall), 3 minutes per axis.

2.2 <u>MARKING</u>

The marking shall be in accordance with the requirements of ESCC Basic Specification No. 21700 and as follows.

The information to be marked on the component shall be:

- (a) Terminal identification (see Para. 1.6).
- (b) The ESCC Qualified Component symbol (for ESCC qualified components only).
- (c) The ESCC Component Number (see Para. 1.4.1).
- (d) Traceability information.

ISSUE 7

PAGE 15

2.3 <u>ELECTRICAL MEASUREMENTS AT ROOM, HIGH AND LOW TEMPERATURES</u> Electrical measurements shall be performed at room, high and low temperatures. Consolidated notes are given in Para. 2.3.3.

2.3.1 Room Temperature Electrical Measurements

Characteristics	Symbols	Test	Test Conditions Limits		nits	Units
		Method	Note 1	Min	Max	
Input Current	l _{in}	ESCC No.24200	For 4MHz ≤ f _{Nom} < 20MHz:	-	20	mA
			For $20MHz \le t_{Nom} < 50MHz$:	-	25	
			For 50MHz $\leq t_{Nom} \leq 100MHz$:	-	30	
Output Waveform	-	ESCC		Symm	ietrical	-
(AHCMOS and ACMOS)		110. 24200		Square (Not	te 2)	
Output Voltage High Level	Vон	ESCC No. 24200		2.4	-	V
Output Voltage Low Level	Vol	ESCC No. 24200		-	0.4	V
Frequency Accuracy	∆f/f _{Nom}	ESCC No. 24200	At T_{amb} = +25 ±1°C Referred to f _{Nom}	-	±25	ppm
Frequency-Voltage Tolerance	Δf/f(V)	ESCC No. 24200	At $T_{amb} = +25 \pm 1^{\circ}C$ Referred to f at V_{CCNom}		+3	ppm
Frequency-Load Tolerance	Δf/f(L)	ESCC No. 24200	For $C_L = C_{LMin}$, $C_{LNom} \& C_{LMax}$, $R_L = 1k\Omega$, Referred to f at C_{LNom}	-	±5	ppm
Startup Time	t _{su}	ESCC No. 24200		-	10	ms
Rise Time	tr	ESCC No. 24200	For $4MHz \le f_{Nom} < 16MHz$: For $16MHz \le f_{Nom} < 80MHz$: For $80MHz \le f_{Nom} \le 100MHz$:	- - -	10 7 5	ns
Fall Time	t _f	ESCC No. 24200	For $4MHz \le f_{Nom} < 16MHz$: For $16MHz \le f_{Nom} < 80MHz$: For $80MHz \le f_{Nom} \le 100MHz$:	- - -	10 7 5	ns
Duty Cycle	DC	ESCC No. 24200		45	55	%
Ageing Analysis	Δf/f	ESCC	Ageing Period = 30 days	-	±1.5	ppm
		No. 3503	Ageing Period = 1 year	-	±5	
			Ageing Period = 18 years	-	±15	

ISSUE 7

2.3.2 <u>High and Low Temperatures Electrical Measurements</u>

Characteristics	Symbols	Test	Test Conditions		Limits	
		Method	Note 1	Min	Max	
Input Current	lin	ESCC	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C			mA
		No. 24200	For $4MHz \le f_{Nom} < 20MHz$:	-	20	
			For 20MHz \leq f _{Nom} $<$ 50MHz:	-	25	
			For 50MHz \leq f _{Nom} \leq 100MHz:	-	30	
Output Waveform	-	ESCC No. 24200	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C Symmetrical Square Way		etrical Wave	-
Output Voltage High Level	V _{OH}	ESCC No. 24200	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C	2.4	-	V
Output Voltage Low Level	V _{OL}	ESCC No. 24200	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C	-	0.4	V
Frequency-Temperature Stability	∆f/f(T)	ESCC	At T _{amb} = -55 (+1 -0)°C to +110 (+0 -1)°C. Note 3	-	±30	ppm
			Referred to f at T_{amb} = +25 ±1°C			
Frequency-Voltage	∆f/f(V)	ESCC	At T _{amb} = -55 (+1 -0)°C to +110 (+0 -1)°C			ppm
Tolerance		No. 24200	Referred to f at V _{CCNom}			
			For 3.13V, 3.3V & 3.47V:	-	±4	
Startup Time	t _{su}	ESCC No. 24200	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C		10	ms
Rise Time	tr	ESCC	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C			ns
		No. 24200	For $4MHz \le f_{Nom} < 16MHz$:	-	10	
			For 16MHz \leq f _{Nom} < 80MHz:	-	7	
			For $80MHz \le f_{Nom} \le 100MHz$:	-	5	
Fall Time	t _f	ESCC	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C			ns
		No. 24200	For $4MHz \le f_{Nom} < 16MHz$:	-	10	
			For $16MHz \le f_{Nom} < 80MHz$:	-	7	
			For $80MHz \le f_{Nom} \le 100MHz$:	-	5	
Duty Cycle	DC	ESCC No. 24200	At T _{amb} = -55 (+5 -0)°C and +110 (+0 -5)°C	45	55	%

2.3.3 Notes to Paras. 2.3.1 and 2.3.2 Room, High and Low Electrical Measurements

1. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3^{\circ}C$ and the component under test shall be operated at V_{CCNom} with an output load of C_{LNom} in parallel with $R_L = 1k\Omega$. V_{CCNom} and C_{LNom} are specified in Para. 1.5 Maximum Ratings.

2. The shape of the output waveform shall comform to the requirements specified in the Manufacturer's PID, as applicable for AHCMOS or ACMOS (see Para. 1.4.2(b)).

3. Frequency-Temperature Stability shall be measured at a minimum of 10 equally spaced increments over the specified temperature range.

PAGE 17 ISSUE 7

2.4 PARAMETER DRIFT VALUES

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

The test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1 Room Temperature Electrical Measurements.

The drift values (Δ) shall not be exceeded for each characteristic specified. The corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Limits		Units	
		Drift	Abso	olute	
		Δ	Min	Max	
Input Current	lin				mA
For $4MHz \le f_{Nom} < 20MHz$:		±5%	-	20	
For $20MHz \le f_{Nom} < 50MHz$:		±5%	-	25	
For 50MHz \leq f _{Nom} \leq 100MHz:		±5%	-	30	
Frequency Accuracy	∆f/f _{Nom}	±10			ppm
Initial measurement:			-	±15	
Final measurement:			-	±25	

ISSUE 7

PAGE 18

2.5 INTERMEDIATE AND END-POINT ELECTRICAL MEASUREMENTS

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3 °C.

The test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1 Room Temperature Electrical Measurements or Para. 2.3.2 High and Low Temperatures Electrical Measurements, as follows.

The drift values (Δ) shall not be exceeded for each characteristic specified. Unless otherwise specified, the corresponding absolute limit values for each characteristic shall not be exceeded.

Characteristics	Symbols	Test	Limits			Units
		Conditions	Drift	Absolute		
			Value Δ	Min	Max	
Input Current	lin	As per				mA
For $4MHz \le f_{Nom} < 20MHz$:		Para. 2.3.1	-	-	20	
For $20MHz \le f_{Nom} < 50MHz$:			-	-	25	
For 50MHz \leq f _{Nom} \leq 100MHz:			-	-	30	
Output Waveform	-	As per Para. 2.3.1	-	Symmetrical Square Wave		-
Output Voltage High Level	Vон	As per Para. 2.3.1	-	2.4	-	V
Output Voltage Low Level	Vol	As per Para. 2.3.1	-	-	0.4	V
Frequency Accuracy	∆f/f _{Nom}	As per Para. 2.3.1	±8.5 (1)	-	±25 (2)	ppm
Frequency-Temperature Stability	∆f/f(T)	As per Para. 2.3.2		-	±30	ppm
Rise Time	tr	As per				ns
For $4MHz \le f_{Nom} < 16MHz$:		Para. 2.3.1	-	-	10	
For $16MHz \le f_{Nom} < 80MHz$:			-	-	7	
For $80MHz \le f_{Nom} \le 100MHz$:			-	-	5	
Fall Time	tr	As per				ns
For $4MHz \le f_{Nom} < 16MHz$:		Para. 2.3.1	-	-	10	
For $16MHz \le f_{Nom} < 80MHz$:			-	-	7	
For $80MHz \le f_{Nom} \le 100MHz$:			-	-	5	
Duty Cycle	DC	As per Para. 2.3.1	-	45	55	%

NOTES:

1. Drift value (Δ) is only applicable to testing during the Endurance Subgroup.

2. Absolute limit is only applicable to testing during the Environmental/Mechanical Subgroup.

PAGE 19

2.6 BURN-IN CONDITIONS

The test conditions for Burn-in, tested as specified in the ESCC Generic Specification, shall be as follows:

(a) Ouptut Load: C_{LNom} in parallel with $R_L = 1k\Omega$. C_{LNom} is specified in Para. 1.5 Maximum Ratings.

2.7 FREQUENCY AGEING CONDITIONS

The test conditions for Frequency Ageing, tested as specified in the ESCC Generic Specification, shall be as follows:

(a) Ouptut Load: C_{LNom} in parallel with $R_L = 1k\Omega$. C_{LNom} is specified in Para. 1.5 Maximum Ratings.

2.8 OPERATING LIFE CONDITIONS

The test conditions for Operating Life, tested as specified in the ESCC Generic Specification, shall be as follows:

(a) Ouptut Load: C_{LNom} in parallel with $R_L = 1k\Omega$. C_{LNom} is specified in Para. 1.5 Maximum Ratings.

2.9 TOTAL DOSE RADIATION TESTING

All lots shall be irradiated in accordance with ESCC Basic Specification No. 22900, low dose rate (window 2: 36rad(Si) to 360rad(Si) per hour).

2.9.1 <u>Bias Conditions and Total Dose Level for Total Dose Radiation Testing</u> The following bias condition (worst-case) shall be used for Total Dose Radiation Testing at T_{amb} = +22 ±3°C:

With Supply Voltage: V_{CC} = 3.47V during irradiation.

The total dose level applied shall be as specified in Para. 1.4.3 or in the Purchase Order.

ISSUE 7

PAGE 20

2.9.2 <u>Electrical Measurements for Total Dose Radiation Testing</u>

Prior to irradiation testing the devices shall have successfully met Para. 2.3.1 Room Temperature Electrical Measurements specified herein.

Unless otherwise specified, the measurements shall be performed at T_{amb} = +22 ±3°C.

Unless otherwise specified, the test methods and test conditions shall be as per the corresponding test defined in Para. 2.3.1 Room Temperature Electrical Measurements.

The parameters to be measured during irradiation testing, on completion of irradiation testing, after 24 hours anneal at Room Temperature and after 168 hours anneal at T_{amb} = +100 ±3°C are shown below.

Characteristics	Symbols	Limits		Units
		Min	Max	
Input Current	lin			mA
For $4MHz \le f_{Nom} < 20MHz$:		-	20	
For 20MHz \leq f _{Nom} $<$ 50MHz:		-	25	
For $50MHz \le f_{Nom} \le 100MHz$:		-	30	
Output Waveform	-	Symmetrical Square Wave		-
Output Voltage High Level	Vон	2.4	-	V
Output Voltage Low Level	Vol	-	0.4	V
Frequency Accuracy	$\Delta f/f_{Nom}$	-	±25	ppm
Rise Time	tr			ns
For $4MHz \le f_{Nom} < 16MHz$:		-	10	
For $16MHz \le f_{Nom} < 80MHz$:		-	7	
For $80MHz \le f_{Nom} \le 100MHz$:		-	5	
Fall Time	t _f			ns
For $4MHz \le f_{Nom} < 16MHz$:		-	10	
For $16MHz \le f_{Nom} < 80MHz$:		-	7	
For $80MHz \le f_{Nom} \le 100MHz$:		-	5	
Duty Cycle	DC	45	55	%

ESCC Detail Specification

PAGE 21

No. 3503/001

ISSUE 7

APPENDIX A

AGREED DEVIATIONS FOR RAKON FRANCE S.A.S. (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Para. 1.4.3 Component Type Variants	Oscillators with ACMOS outputs (output waveform code AC) are available from Rakon but only with specific frequencies. Customers should contact Rakon to confirm feasibility and availability.
	Oscillators with Nominal Output Frequencies, f _{NOM} , in the range 4MHz to 100MHz are available from Rakon. However, for frequencies below 24MHz, Customers should contact Rakon to confirm feasibility and availability.
Para. 2.1.2 Deviations from the Generic Specification: Deviations from Screening Tests - Chart F3	Frequency Ageing: Ageing Analysis: The projected 1 and 18 year total frequency changes shall be determined by means of a logarithmic (rather than linear) extrapolation from the end of the ageing measurement period using the A and B constants determined from the least squares fit.
	e.g., The frequency change over the period of 1 year (365 days) for a total ageing measurement period of T_a , in days (where T_a is 30 days or longer), is given by:
	$\Delta f(1yr) = (A \times \ln(B \times (365 + T_a) + 1)) - (A \times \ln(B \times T_a + 1))$
Para. 2.1.2.1 Deviations from Qualification and Periodic Tests - Chart F4	Solderability: Solderability may be performed in accordance with Test Ta (without ageing) of IEC Publication No. 60068-2-20.